
An Internet Banking Framework with Perl

Carlos de la Guardia

Javier Rodríguez

Aldea Internet

 Abstract
 Aldea Internet Banking Framework is a Perl-based
Web application that allows financial institutions to
provide to its customers a wide spectrum of online
banking services, including home banking, enterprise
banking and virtual points of presence. Architecturally,
the framework integrates seamlessly to the bank’s
legacy systems through a Communications Module,
and allows the integration of improved customer
services by encapsulating most of the business logic in
a separate Operations Module. As an application, its
ultimate goal is to complement -and eventually replace-
the expensive online banking in-house developments
based on closed or proprietary technologies.

This paper describes the architecture and inner
workings of Aldea Internet Banking Framework and
the finer details of its implementation for one of the
largest banks in México: Banco del Atlántico.

The project
Our customer, Banco del Atlántico, had an application,
developed in-house, which allowed its corporate clients
to process transactions and consult a number of reports
generated on the fly, like balances. This DOS-based
application connected via modem to a terminal server
located at the bank and from there talked to a
mainframe application which actually carried out the
desired operations.

The problems with this approach were many: low
security, modem and phone line needed for every client,
high installation costs and times (because every new
version had to be installed all over again),
incompatibilities with different versions of the operating
system, maintenance nightmares with the code and
unhappy clients.

The bank decided to use Internet technologies to solve
these problems and at the same time begin the transition
from their old, inefficient systems to more modern
developments. They also came up with a bold idea for
minimizing the cost and resources required for opening
new bank offices.

The political situation in the bank at that time made
necessary the division of the project in three phases.
The first one was the creation of a front end for their
current systems that substituted the current client
program for a web browser and some server side
applications and integrated security measures. The

second one included the modifications of this front end
necessary for dealing with point of sale equipment, so
that it could be used as a mini-bank inside video rental
stores equipped with just a computer, modem, bar code
scanner and printer. The third phase was the gradual
substitution of the old mainframe applications for newer
systems developed from scratch to fit the new paradigm.

This paper deals with the first two phases of the project,
in which Perl played a major role.

The challenges
From the beginning, the project presented a lot of
difficulties. The time frame given to us was rather small
(only eight weeks from conception to implementation)
and the application was meant to be in production by
the fall of 1997. Many bank officials considered the
project a wild goose chase. The mainframe applications
with which had to interface were not very well
documented. And finally, the people responsible for
them were seldom if ever at hand.

In México, most banks have their own in-house
development teams, and there are no standards for
applications programming or file formats. Also, since
the banks in México were nationalized in the 80’s and
re-privatized some years later, there have been a lot of
changes in systems management and policies, together
with a high personnel rotation.

All this has created a situation in the banks where a
consultant is faced with extremely old systems which
run a variety of applications coded in different
languages and very poorly documented (no source code
available in many cases). Banco del Atlántico was a
good example of this situation.

Another problem that we faced was this: the existing
application used a session-oriented message exchange
protocol, so that clients did all their work in a single
connection. Of course, the web protocol is a stateless
one, so we needed a way to maintain state between web
connections that at the same time tricked the mainframe
application into thinking that everything was happening
in a single session.

In short, we were presented with the following
challenge: create a middleware capable of
communicating with a session-oriented COBOL
application running in a UNISYS mainframe, which
then could interface with a stateless web server to
present the old information in a new, attractive format

in a web browser.

The approach
We decided early on to use a modular approach for the
construction of this project. The idea was to encapsulate
tasks like communication with legacy systems and
business logic into separate modules. This would hide
the implementation details from the main application
and each other. This way, if changes were made to some
part of the system in the future (say, the COBOL
application gets updated or a new machine is added),
only the pertinent module would need to be altered.

To solve the ‘stateless protocol’ problem, we decided to
redirect all web connections to persistent processes that
kept an open session on the mainframe for each client.

System requirements

• Hardware. The bank decided that the main
application would run in an HP server running
a secure environment for web servers called
Virtual Vault, which would act as a web
application gateway.

• Programming Language. When deciding upon
the programming language to use for our
modular approach, we initially considered
"raw" C & C++, Java and Perl. However, we
quickly saw that C or C++ were not really an
option, since the time frame was way too
narrow. Java was not considered mature
enough because servlet technology was still in
early beta. Since both authors are long-time
Perl hackers, after an objective language
comparison we weren’t surprised to learn that
Perl was chosen as the programming language
for this project. We knew from first-hand
experience that Perl allowed rapid
development cycles and also how easy it is to
construct and integrate modules with it. We
also decided at this point to use the wealth of
modules already available for Perl
programmers to shorten development time
even further.

• RDBM. Since the bank was in the process of
adopting Informix as RDBM of choice, we had
to use this database for our project. The DBI
modules came in handy here, as they allowed
not only a seamless connection to the database
but database engine independence as well.

Tools

• Perl. Not only the application itself, but also
all our testing and monitoring tools for use
during the development, testing and
deployment phases were written in Perl.

• FastCGI. We needed a proven protocol to
provide connectivity between the web server
and the application gateway. It also solves
beautifully the session-oriented vs stateless
issue.

Extensibility
One of the main goals of the project was to have the
ability to implement and integrate new business
functions easily. The key to this was the modular
approach. Our design was made in a way that allowed
new procedures to be effortlessly inserted into their
place as if they always had been part of the original
design.

Scalability
Since the plans of the bank were to eventually offer
their Internet banking services not just to corporate
clients but to would be home bankers everywhere in the
country, we had to plan for huge numbers of users from
the very beginning. We decided to use a process
manager that would route petitions to the first available
server process, so that new servers could be added
easily as the number of customers required it. Initially
only one server would be used.

Security
We’re talking about a bank with a direct connection to
the Net here. This mere tough sends shivers down the
spine of most people on the financial market. But we
counted on our experience in Internet programming and
on a certain HP product named "Virtual Vault".

Export restrictions were much of a concern, too. Even
though the US Department of Commerce allows the
export of domestic-level encrypting servers out of the
US for use by (some) foreign financial institutions, the
browsers available at the time outside the US were
unable to interact with a domestic server product using
full-strength cryptography. This restriction proved to be
unacceptable to the customer.

In order to solve this issue, a third-party product called
SeguriProxy was integrated to provide full-strength
encryption of the channel trough a proprietary protocol.

This security solution introduced another problem for
us, since the Virtual Vault OS is really picky about what
things can run in its protected area. We solved this by
using a small C program residing in the Virtual Vault’s
sandbox as a bridge between the web server and the real
web application.

A network diagram showing the role of the Virtual
Vault is shown if Figure 1.

Architectural overview
Figure 2 shows the different components involved in the
application.

• Web browser. The application was designed to
be browser-independent, but it took advantage
of a decent subset of HTML and a couple of
javascript code snippets in order to improve
the browsing experience. In order to take
advantage of full-strength encryption, the
option of proxy connection was mandatory.

• Channel encryption. We achieved
confidentiality and authentication through full-
strength encryption using a third-party product
split in three parts: a user proxy that ran in the
user’s box and talked to a central proxy
running in the external compartment of the
Virtual Vault. Both parts needed to
authenticate to each other using a valid
certificate in order to establish a secured
connection, and the later that would act as a
second proxy and connect locally to a
restricted, unsecured HTTP server running on
a nonstandard port. Finally, a central
Certificate Authority would extend both user
and server certificates in PKCS7 format,

• Authorization server. Its main function is user
certificate authentication against a valid-user
database. The idea was that it would evolve
into a full user clearance system.

• Process manager. A FastCGI application
itself, this little program reads the user-
certificate HTTP header in order to assert its
validity. Next it determines if there is a
FastCGI process running for that user, and
creates one if necessary. After that, it connects
the incoming HTTP connection to the
corresponding FastCGI session.

• Application gateway. The FastCGI application
would encapsulate the user interface logic, the
business logic, the protocol-session state
machine and TCP/IP host connectivity in a
single, isolated process. This process would
receive all kinds of HTTP headers and input –
and emit the corresponding output- through
process manager as if it were directly
connected to the corresponding customer’s
browser.

Why Perl?
First of all, we believe in Perl. We know what it can do
and have been promoting its use for important projects
since we started working in this field. Also, we like Perl
and would rather work with it that with other languages
whenever possible.

But most important, the particular conditions of this
problem made Perl the perfect solution. Which other
language would allow to turn in a successful application

in a short time frame and with less than optimal working
conditions? Which other language offers such an open
repository of proven tools capable of greatly reducing
testing and development cycles?

Advantages of using Perl

• Short development cycle. Code modifications
and the implementation of new functionality
were easily incorporated into development
code and got to production in almost no time
without the need to recompile each time.
Besides that, the development facilities of Perl
are hard to rival: all the way from warnings
and tainting to the integrated Perl debugger,
the language contributes to make the
programming experience not just easy, but also
fun.

• Maintainability. The use of Perl modules along
with the Revision Control System allowed a
stable and maintainable code base. The self-
documenting capabilities of the language and a
coding style that resembled the english
language also allowed easily readable code.

• Extensive use of language features. The use of
regular expressions in the parsing of server
messages proved to be quite a time saver. The
DBI and DBD::Informix modules permitted an
easy database integration, as the networking
modules were of great help.

• Code reuse through the usage of existing
modules. We were able to use existing
modules (Most notably CGI.pm and
Telnet.pm) and implement a top-down modular
architecture using Perl modules.

Drawbacks

• Obscurity of language. In corporate IT circles,
anyway. Need to offer Perl training as part of
the bundle. Lack of commercial support is a
common worry. Perl advocacy docs came in
handy here.

• Performance. Worries about expected
performance under heavy load. Considerable
footprint (~1.1MB per user) . Multiprocessing
instead of multithreading. (Hey, we look
forward to Perl multithreading!)

Implementing persistency: the application
core
Since the core of the developed applications belong
either to the bank or to Aldea Internet, which is our
company, we are not at liberty to give away all the code
from our work. However, Aldea has allowed us to freely
distribute the code from our process manager, which in

many ways was the heart of our solution. This module is
available electronically at
http://www.aldea.com.mx/papers/banking/ .

Anyway, the majority of the modules developed for this
project are too specific for our client and not of real use
for the general Perl community.

We feel that the process manager could be a really
useful tool for those who want to interface with session
based legacy systems using stateless protocols like
HTTP. Due to the time limits set for this project the tool
is far from completed and could maybe be used more as
a model than as a finished application.

Some ideas we came up with for this program during
development are:

• Interface for serial or terminal based systems.

• Interface for complex legacy database driven
applications.

• Interface for a MUD system.

We have found in our experience that the first two
problems mentioned are fairly common in the financial
sector when dealing with legacy applications and their
integration to new technologies like the web.

Conclusions
This project was very successful for us and proved to
many unbelievers that Perl can really offer solutions to
complex problems in the real world of financial
institutions. Not only did we save time and money using
Perl, but also developed a strong and scalable solution
with minimal recoding because of Perl’s strength joined
with its unmatched properties as a ‘glue’ language.

 Carlos de la Guardia is Director of Systems
Development at Aldea Internet. He has five years
experience in developing Internet applications. He can
be reached at Aldea Internet, Daniel Delgadillo #5,
Tlalnepantla, Estado de México, México. CP 54050.
cguardia@aldea.com.mx or
http://www.aldea.com.mx/~cguardia/.

 Javier Rodríguez is Research and Development
Manager at Aldea Internet. He received a BS in
electrical engineering from ITESM Campus Estado de
México and has been working on Internet Application
Development for the last six years. He can be reached
at Aldea Internet, at jrodrig@aldea.com.mx or
http://www.aldea.com.mx/~jrodrig/ .

An electronic version of this document is available at
http://www.aldea.com.mx/papers/banking/ .

