

Building visually consistent,
multilingual websites
with Apache and mod_perl

Javier A. Rodríguez
R&D Manager, LatinB2B
jrodriguez@latinb2b.com

September 6, 2000

Introduction
In the course of designing a large multilingual site, there are more challenges than

providing a content management system or just making all pages look alike. Making
browser, proxy and server work together to respond to user interaction, as expected, and
deliver content to a multilingual, multicultural audience has been a challenge for Latin-
American web designers for several years.

This article deals with some possible solutions to this problem using Apache and
mod_perl, but the concepts shown here also apply to other web servers and other
language interfaces to the Apache API

In the rapidly moving times of the Internet, it is unrealistic to believe that a given
piece of information will stay relevant for too long once committed to non-digital means.
For this reason, the latest version of this document is available online at
http://people.latinb2b.com/~jrodriguez/

A bit of history
Multilingual support has been a necessity for Latin American web developers since

the commercial acceptance of the web. Most companies would request a bilingual site to
disseminate corporate information to both local and foreign customers, suppliers and
investors. The simplest solution –which is used a lot even these days- is having the site
split logically in as many languages as needed and presenting the user with a menu that
lets the visitor choose an initial path depending on his preference. Even though this
approach is simple and straightforward, it is rather unpractical for large sites since it
imposes a single point of entry for the site, is an extra step to reach useful content, and
forces the user to make a language choice every time he returns.

In addition, consider what happens when the user arrives to an “inner” page through a
different site or a search engine. If the user needs to access the content in a different
language, he must go back to the language selection menu and navigate back to the
equivalent page in his preferred language – assuming that the user correctly guessed that
there was a different version at all. This only gets worse while accessing historic archives
or when the navigational system is confusing.

Overall, the problem of switching between languages can be addressed with a
template-driven system that -besides providing a consistent look across the entire site-
allows every page to include a language selection menu, but this doesn’t solve the
problem of having the user make an explicit choice every time he comes back.

mailto:jrodriguez@latinb2b.com
http://personal.latinb2b.com/~jrodriguez/

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 2

Even before the Accept-Language HTTP header existed (transmitted by browser for
years) there were a few ways to make an educated guess about a user’s native language,
that is, inspecting his browser’s User-Agent string or the visitor’s domain name.

For instance, back in 1996, Version 2 of Netscape browsers would send an HTTP
Accept-Language header when explicitly configured to do so. Even then, the same
version in English would identify itself as “Mozilla/2.02 (Win95; I)”, while a version in a
foreign language would send a different User-Agent, i.e. “Mozilla/2.02 [es] (Win95; I)”
for the version in Spanish. The problem was that a lot of Spanish-speaking users would
use the English version of the browser because it was the version distributed or supported
by their ISP, and mostly because there was a significant gap of time between the English
release of a browser and the equivalent translated version. Unfortunately, this meant that
English releases were less buggy than the older translated versions.

Inverse domain name resolution –though slow- could also give a clue of the visitor’s
language if mapped to one of the languages spoken in the users’ country. For instance, a
visitor accessing the site from a host with a top-level domain equal to ‘.mx’ indicates that
the user has a great possibility of being physically located in Mexico and that his native
language might be Spanish. Of course, this approach fails miserably for countries with
several official languages and .com and .net top-level domains, which are not
geographically bound to a single country.

In short, none of these last two approaches was foolproof, but at that time it was better
than nothing.

The challenge
LatinB2B was founded in October of 1999; as part of its value proposition we would

build a brochureware site providing company information and a set of vertical industry
portals offering access to local, premium quality information resources relevant to a given
industry in each visitor’s native language. All content should be available in the three
languages most commonly used in Latin America: Spanish, Portuguese and English. The
“look and feel” of every vertical industry portal should be consistent among all languages,
and a visitor must be able to switch between languages if needed.

The solution
During the analysis phase of LatinB2B’s portals, several choices had to be made. The

choice of operating system and web serving software was an easy one, given our years of
experience using open source software. After weighing code maturity, scalability,
reliability and price, we decided to go for Apache under Linux.

Content management was an obvious choice after this. Integration of WebDAV and
CVS tools gave us a powerful content management system that everyone could use
through an easy-to-use graphical user interface.

Visual consistency was a non-issue, since a lot of template substitution systems had
been developed for Apache, and it was rather trivial to integrate a SSI-like template-
driven system using chained content handlers in mod_perl.

However, language selection was still an issue. The most desirable feature was auto
detection of each visitor’s preferred language using all available information.

Javier Arturo Rodríguez
 jrodriguez@latinb2b.com

 Page 3

Content negotiation
The obvious place to turn to was Apache’s built-in content negotiation features.
The HTTP/1.0 spec in RFC1945 [5] defines the following two headers:

“D.2.4 Accept-Language

 “The Accept-Language request-header field is similar to Accept, but
 restricts the set of natural languages that are preferred as a
 response to the request.

“D.2.5 Content-Language

 “The Content-Language entity-header field describes the natural
 language(s) of the intended audience for the enclosed entity. Note
 that this may not be equivalent to all the languages used within the
 entity.

So in theory, the browser sends a list of language tags that indicate the user preference
and with this information, the server decides which versions are available and decides
which version to send, appropriately marking it.

These tags are defined in RFC1766 [4], and are composed of a primary language tag
and an optional set of subtags. The primary language tags, consisting of exactly two
letters, are interpreted according to the ISO 639 standard [2], which defines the codes for
the representation of language names. The subtag may identify country or dialect
information related to the language or even an unregistered language, but in browsers this
usually identifies the country variant of a language and can be used to derive locale
information.

For instance, let’s say that a Netscape Communicator 4.75 browser is configured to
present content, in order of preference, in English, Spanish with a Mexican locale, and
French with a French locale. In that case, it will transmit an Accept-Language header as
part of the request with the value “en, es-MX, pt-BR”; Internet Explorer 5, by the way,
will transmit “en-us, es-mx;q=0.7, pt-br;q=0.3”, in closer compliance with the RFC (!).

The value of this header will be available to CGI programs with the name transformed
in the usual way (all caps, with dashes transformed to underscore chars and HTTP_
prefix). In this case, as the HTTP_ACCEPT_LANGUAGE environment variable.

Let’s take a look at the CGI environment:

#!/usr/local/bin/perl

print "Content-type: text/html\n\n";
for(sort keys %ENV) {

print "$_=$ENV{$_}
\n";
}

Among a plethora of environment variables we will find something like the following:

HTTP_ACCEPT_LANGUAGE=en-us,es-mx;q=0.7,pt-br;q=0.3

For this feature to work properly, the user must configure his specific language
preferences in his browser. The procedure varies from one browser to the next, but
fortunately enough, the Debian Project has put together a comprehensive reference[19] to
perform this configuration in the most popular browsers.

http://www.faqs.org/rfcs/rfc1945.html
http://www.faqs.org/rfcs/rfc1766.html
http://www.oasis-open.org/cover/iso639a.html
http://www.debian.org/intro/cn

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 4

Here’s a very important excerpt from this document:

“One thing you need to be careful of is using sub-categories of languages. Using 'en-GB, fr', for
example, does not do what most people expect (if they have not read the http specification). A
server that receives a request for a document with a preferred language of 'en-GB, fr' when both an
'en' and 'fr' version exist will serve the French one. It will only serve the English document before
the French one if there is a version of the file with en-gb for the language extension. Thus, you
should configure your browser to send 'en-GB, en, fr' or simply 'en, fr'. It does work the other way
though, e.g. a server can return en-us when en is requested.

We will see a practical example of this “feature” in the following section, but in the

mean time please note that most users are unaware of this recommendation.

MultiViews
Multiviews are the simplest way to turn on content negotiation. IF the MultiViews

option is present and the requested file is absent, Apache performs a pattern match on the
filename to construct an internal Type Map, which is simply a list of potential files that
fulfill the visitor’s browser capabilities and language preferences.

To get Apache to serve multilingual content using this feature, add the following lines
to the httpd.conf file:

1. If you compiled Apache yourself, make sure that the mod_negotiation module is
active. If you got a binary version it is usually compiled in by default. As a quick check in
Unix, the following two lines should appear near the top of the httpd.conf file.

LoadModule negotiation_module libexec/mod_negotiation.so
(…)
AddModule mod_negotiation.c

2. Map the ISO codes of the languages you will support to the extensions of the files
you will use: i.e.:

AddLanguage en .en
AddLanguage es .es
AddLanguage pt .pt
AddLanguage fr .fr
AddLanguage de .de

3. Define the default priority of these languages:

LanguagePriority en es pt fr de

4. Define the MultiViews option inside a directory or location:

<Directory "/opt/apache/servers/apachecon/docs/multiviews">⌧
Options MultiViews
DirectoryIndex index
</Directory>

As you can see, Apache can be configured to serve multilingual content in less than
five minutes. Unfortunately, this has a price: a filename pattern match must be performed
for every request.

Type maps
A type map explicitly lists all variants of a given URI and their attributes. It allows

more sophisticated weighing of the file’s characteristics depending on both the client
preferences and an explicit quality factor for each file, which is meant to provide a guide

Javier Arturo Rodríguez
 jrodriguez@latinb2b.com

 Page 5

over the “best” file format as defined by the author. This feature is most useful when a
given file is available in different formats and it’s unknown if the client has support for all
of them.

Consider for instance a documentation file available in RTF, HTML, PDF and PS,
being the original file format RTF. Sample quality ratings for these files might be as
follows:

File format Quality
factor

RTF 1.0
PostScript 0.8
PDF 0.5
HTML 0.3
Plain text 0.1

This means that the RTF format would be preferred over all the others, perhaps
because it is the original version and can be easily edited and transformed into the others.
The PostScript and PDF versions follow because they can be printed without giving up
quality. The HTML version follows because it preserves some format attributes, and the
plain text version is also available just in case the other ones are unacceptable.

Of course, this feature can also be used to negotiate content language as well. In this
case, quality factors are also followed although concerning languages quality rating is not
meaningful.

To actually use this feature in Apache, we need to add another configuration directive
to httpd.conf (besides those in the last section):

AddHandler type-map var

This line tells Apache that it should treat filenames matching filename.var as the type
map for that given file.

Now, for each file we will serve, we need to construct a type map. This file usually
has this format:

URI: index.en.html
Content-type: text/html
Content-language: en,en-gb,en-us
Description: “English version (Original)”

URI: index.es.html
Content-type: text/html
Content-language: es,es-mx
Description: “Spanish version (translation)”

URI: index.pt.html
Content-type: text/html
Content-language: pt
Description: “Portuguese version (translation)”

Using this feature, if a visitor requests the document named ‘index’, the type map will
be consulted and all possible variants will be weighed.

Perhaps the niftiest trick with explicit type maps is that if none of the versions found
meet the client’s requirements, an HTML menu describing all those available will be
shown.

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 6

Disadvantages of mod_negotiation
Consider the following two scenarios of the use of mod_negotiation:
• The user has configured [es-AR, pt-BR, en-GB] as his preferred languages. Since

none of the languages match, Apache will return the first available version of the
document defined by the LanguagePriority directive given before.

Of course, this is the user’s fault and not Apache’s because he didn’t set appropriate
fallback values in the browser language preferences, but it is a serious problem
nonetheless. We can work around this limitation using more AddLanguage directives and
an unhealthy number of symlinks, but it becomes rather impractical as we add support to
new languages.

• The user has configured his browser to use [en, es, pt] and while navigating the
site he decides that he wants to see the content in another language. He fiddles
with his browser preferences to set [es, en, pt] and hits the “Reload” button.

Probably nothing will happen: even tough Apache is intelligent enough to mark the

negotiated docs as non-cacheable, most browsers think they know better and get the
document back from their local cache, a huge mistake! In some cases, even if HTML
documents load in the correct language, previously negotiated images would stay in the
previous language. The caching problem only gets worse as we add more browsers,
proxies and firewalls to the mix.

Additionally consider that when using explicit type maps they must be synchronized
with the alternates. If you decide to take this approach, seriously consider writing a script
to avoid maintaining the type maps by hand.

We see that even though Apache’s content negotiation module is adequate for some

tasks, it falls short for proper language selection. In short, a good language selection
mechanism must determine a user’s explicit language choice or otherwise establish a
sensible default. The user must be able to change the language at any time and the user
interface must change accordingly.

Using Apache::SelectLanguage
Once the user has made a choice, it should be remembered. Being HTTP a stateless

protocol, there’s no standard way to preserve state on the server. Luckily enough, the
problem has been pondered before, and the most straightforward way to do that is to use a
client-side cookie to store the language tag. Further elaboration on cookies and the way
they work is beyond the scope of this article, but there are many articles and references
about them on the Web [16][17][18].

Apache::SelectLanguage is a simple module that aids in determining the user’s
language, taking into account a variety of client information. It is available online at
http://people.latinb2b.com/~jrodriguez/perl/.

Apache::SelectLanguage is meant to be installed as a PerlFixupHandler under
Apache+mod_perl using –for instance- the following configuration directives on
httpd.conf:

http://people.latinb2b.com/~jrodriguez/perl/

Javier Arturo Rodríguez
 jrodriguez@latinb2b.com

 Page 7

PerlModule Apache::SelectLanguage
PerlSetVar Languages "es,en,fr,de,pt"
PerlSetVar LanguageHandlers "cgi(_lang),cookie(language),accept"
PerlFixupHandler Apache::SelectLanguage

The PerlSetVar Languages directive lists all the languages that we intend to
support in our site.

The PerlSetVar LanguageHandlers directive lists in direct execution order
the handlers that will be eval’ed; each handler can receive an optional argument. If a
given language handler fails to recognize a match between a language set as a user
preference and one of the available languages, it will pass control to the next handler in
line - very much like the standard Apache handler mechanism.

These are the language handlers available as of September 6, 2000:
Handler Description

cgi(varname) Specifies that the language should be extracted from the
QUERY_STRING of a GET request. Internally, the value of
the language is extracted from the request’s args hash.
cgi(_lang) will try to extract the language tag from the
CGI variable named “_language”

cookie(cookiename) Specifies that the language tag should be extracted from the
cookie with the name given. cookie(language) will try
to retrieve the language tag from the cookie named
“language”.

Accept The language tag should be extracted from the Accept-
Language HTTP header.

subprocess_env(varname) The language tag should be extracted from the request’s
subprocess_env variable with the given name. This is
meant to be used with a value set by a previous handler.

If none of the handlers returns a valid language, the first language specified in the
PerlSetVar Languages variable will be taken as the default.
Once a language tag has been determined, a couple of environment variables are set with
$r->subprocess_env():

Environment variable Description
LANGUAGE the preferred language tag
LANGUAGE_SET the name of the handler that made the

determination
Arbitrary language handlers and response setup routines can be added through

subclassing.
An added benefit of this approach is that the LANGUAGE environment variable

usually has a meaningful use for the underlying OS. Consider this CGI:

#!/usr/local/bin/perl

use CGI;
use CGI::Carp qw(fatalsToBrowser);

my $file = "/etc/passwd";
open(FILE,">>$file")||die("$file: $!");
die("I'm in deep trouble");

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 8

When run under a Unix variant with several locales installed (i.e. Debian GNU/Linux)
the die()clause will output an error message in the language set by
Apache::SelectLanguage.

Other than that, the module is not very useful by itself. In order to serve meaningful
content, it will be necessary to use in some way the language value it has returned. In the
case of static content, the two modules listed below will complete the content delivery
cycle in a meaningful way. And in the case of server programs in the form of CGIs or
other content handlers (including programs running under Apache::Registry), it’s best to
use the LANGUAGE environment variable to indicate the desired output language.
Instead of hardwiring messages in your code, i.e.

print(“Invalid password”);

you can use something like

my $lang=$ENV{LANGUAGE};
print(translate(‘MSG_INVALID_PASSWORD’,$lang));

where translate is a custom message translation subroutine. In order to perform
this translation of message names into meaningful phrases for each language, you can use
either the GNU Gettext module for Perl, the Apache::Language module or a proprietary
homebrew method.

Javier Arturo Rodríguez
 jrodriguez@latinb2b.com

 Page 9

Filename translation
Once the preferred user language has been selected, it is necessary to map the URI to

a static file residing in the server’s hard disk, independently of whether the file will have
dynamic content attached. There are at least a couple of filename mappings that can help
to simplify content management chores.

 Single directory hierarchy One hierarchy per language
Filename
mapping

/directory/filename.language.ext /language/directory/filename.ext

Sample layout

�about
 �staff.en.html
 �staff.es.html
 �staff.pt.html
 �media
 �pr-20000321.en.html
 �pr-20000321.es.html
 �pr-20000321.pt.html

�es
 �about
 �staff.html
 �media
 �pr-20000321.html
�en
 �about
 �staff.html
 �media
 �pr-20000321.html
�pt
 �about
 �staff.html
 �media
 �pr-20000321.html

Pros Allows spotting missing files at a
glance

Allows more flexible permission
management

Cons Permissions must be assigned
carefully

Missing files are hard to spot

Recommendation Best when supporting a small
number of languages

Best for numerous staff or
external translation services

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 10

The following listing shows a simple perl module that implements the “Single
directory hierarchy” strategy

package MyPackage::Translate;

use strict;
use Apache::Constants qw(OK DECLINED);

sub handler {
my $r = shift;
return DECLINED unless $r->is_initial_req;

my $lang = $r->subprocess_env('LANGUAGE');

$r->uri(setext($r->uri,$lang));
$r->filename(setext($r->filename,$lang));
return OK;

}

sub setext {
my $str = shift;
my $ext = shift;
$str=~s,(\..*?),.$ext$1,;
return $str;

}

1;

MyPackage/Translate.pm

This module is also meant to be used as a PerlFixupHandler. To use it, create a
directory named MyPackage under a directory in @INC and copy this file in it. Then add
the following section to httpd.conf:

PerlFixupHandler Apache::SelectLanguage
PerlFixupHandler MyPackage::Translate

It is trivial to modify the Translate.pm module to implement the “One hierarchy per

language” strategy; the actual implementation is left as an exercise to the reader.

Javier Arturo Rodríguez
 jrodriguez@latinb2b.com

 Page 11

Serving actual multilingual content
So far, we have just slightly improved mod_negotiate’s language selection

capabilities. If we restart Apache and load a few dummy files, we will see that the content
is served correctly but still fails to change properly after selecting a different language.

The last part of the equation can be addressed by the following sample module:

package MyPackage::Deliver;

use strict;
use Apache::Constants qw(OK DECLINED MOVED);
use Apache::File;

sub handler {
my $r = shift;
return DECLINED unless $r->is_initial_req;

my $filename = $r->filename;
Redirect to index.html on directory request

if($r->content_type() eq 'httpd/unix-directory') {

$r->content_type('text/html');
$r->status(MOVED);
my $uri = $r->uri();
$uri.='/' unless ($uri=~m,/$,);
$uri.='index.html';
$r->err_header_out('URI', $uri);
$r->err_header_out('Location', $uri);
$r->send_http_header();
return OK;

}
my $fh = Apache::File->new($filename) || return DECLINED;
my $date = (stat $r->finfo)[9];
$r->set_last_modified($date);
my $lang = $r->subprocess_env('LANGUAGE');
my $etag = "$date;$lang";

$r->content_language($lang);
Mark explicitly as non-cacheable

$r->no_cache(1);
$r->send_http_header();
return OK if $r->header_only;
$r->send_fd($fh);
return OK;

}

1;

MyPackage/Deliver.pm
This module will serve static content adding the Content-Language header and

marking the file as non-cacheable.

Working around buggy caches
Having control over the content delivery using a custom Content Handler allows us to

control an additional aspect of the server response: the caching behavior.
However, consider what happens when the user for whatever reason decides to

change the language. Internet Explorer, for instance, will compare the URL of the page
with the one in its cache and decide that it is the same document the user was viewing
before, and will refuse to fetch the content from the server. Normally, a hard reload is
needed to dissuade the browser from getting the document from the cache.

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 12

We need to make a tradeoff between marking every page as non-cacheable and
leaving the decision to the browser.

 Default behavior Marking content as Non-
cacheable

Bandwidth Page stays in browser cache Page must be transmitted
with every visit

Action upon language
switch

URL must change to force
reload

Page is reloaded anyway

Recommendation

Best for static content,
including images

Best for dynamic content or
static content that might
change upon language
negotiation

Of course, there is more than black and white. Depending on the application, you

could decide that only files with .html or .txt extension are to be translated:

<FilesMatch "\.(html|txt)$">
PerlFixupHandler Apache::SelectLanguage
PerlFixupHandler MyPackage::Translate

</FilesMatch>

In this case, you should make sure that references to files with different extensions
include the language tag. Apache would transmit HTML and plaintext files every time
they are requested, but it will preserve the normal cache behavior for images and other
inline content. This is not an issue since the images for files in different languages have
different URIs. This mixed approach represents an acceptable compromise and may be
appropriate for most purposes.

Now if content is effectively static, you want to make sure that each page is
transmitted only once for each request in each language and you enjoy living on the edge,
you can use entity tags (ETags) to mark each page uniquely in the browser’s cache. Take
into account that this is an HTTP/1.1 feature and its functionality might be broken or even
totally absent in pre-4.x browsers and some proxies, leading to unpredictable results.

To enable this feature, delete the lines reading

Mark explicitly as non-cacheable
$r->no_cache(1);

and substitute them for this:

Send Entity Tag
$r->header_out('Etag'=>$etag);

More info on the ETag is available on the HTTP/1.1 spec and on Stas Bekman’s most
excellent mod_perl guide in the section about Issuing Correct HTTP Headers and Entity
Tags. However, let me advance a word of caution: don’t use entity tags on files with
dynamic content.

In any case, a nifty trick to force document reload implies modifying the URL of the
actual request appending a query string. If the content is a CGI, care should be taken to
modify the query string instead of appending to it. Note that this technique will not work
on a page that was loaded using the POST request.

http://perl.apache.org/guide/correct_headers.html
http://perl.apache.org/guide/correct_headers.html#2_2_3_Entity_Tags
http://perl.apache.org/guide/correct_headers.html#2_2_3_Entity_Tags

Javier Arturo Rodríguez
 jrodriguez@latinb2b.com

 Page 13

A simple template system
The following module is a modification of MyPackage::Deliver that just adds a static

header and footer to each file request, providing the basis to show a consistent look across
the entire site.

package MyPackage::Deliver2;

use strict;

use Apache::Constants qw(OK DECLINED MOVED);
use Apache::File;

sub handler {
my $r = shift;
return DECLINED unless $r->is_initial_req;

my $filename = $r->filename;
if($r->content_type() eq 'httpd/unix-directory') {

$r->content_type('text/html');
$r->status(MOVED);
my $uri = $r->uri();
$uri.='/' unless ($uri=~m,/$,);
$uri.='index.html';
$r->err_header_out('URI', $uri);
$r->err_header_out('Location', $uri);
$r->send_http_header();
return OK;

}
my($fh, $fh2);
$fh = Apache::File->new($filename) || return DECLINED;
my $date = (stat $r->finfo)[9];
$r->set_last_modified($date);
my $lang = $r->subprocess_env('LANGUAGE');
my $etag = "$date;$lang";
$r->content_language($lang);
$r->header_out('ETag'=>$etag);
$r->send_http_header();
return OK if $r->header_only;
$fh2 = Apache::File->new(setext($r-

>dir_config('DeliverHeader'),$lang));
$r->send_fd($fh2);
$r->send_fd($fh);
$fh2 = Apache::File->new(setext($r-

>dir_config('DeliverFooter'),$lang));
$r->send_fd($fh2);
return OK;

}

sub setext {
my $str = shift;
my $ext = shift;
$str=~s,(\..*?),.$ext$1,;
return $str;

}

1;

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 14

In order to use it properly, the following lines should be present on httpd.conf:

PerlHandler MyPackage::Deliver2
PerlSetVar DeliverHeader /path/to/file/header.html
PerlSetVar DeliverFooter /path/to/file/footer.html

There are more complex, solid ways to put together a template system. In LatinB2B
we use a third-party full content-management system called Xtra to display the
customized vertical industry portals, but beyond the home pages most static and dynamic
content is displayed through a chained content handler not unlike those discussed in
Chapter 4 of Stein and MacEachern’s book[20]. <plug shameless=1>Even if you are not
interested in the minutiae of template-driven websites, if you are going to be using
mod_perl at all you really want to get this book</plug>.

Javier Arturo Rodríguez
 jrodriguez@latinb2b.com

 Page 15

Putting it all together
The following code snippet will set a cookie with a default language for

Apache::SelectLanguage. Note that in order to work around the buggy cache problem, it
will redirect the browser to the referrer page adding a query string –or modifying an
existing one. Besides that, the cookie will have an expiration time of one year so that the
user does not need to reset the language when he comes back.

#!/usr/local/bin/perl

use Apache;
use Apache::Constants qw(:response);
use CGI;

use vars qw($r $cgi);

$r = Apache->request;
$cgi = CGI->new();

my @LANG = split(/,\s*/, $r->dir_config('Languages'));
my %args = $r->args();
my $lang = $args{'lang'};
if(defined($lang)) {

if($lang) {
$r->err_header_out('Set-Cookie', $cgi->cookie(-

name=>'language', -value=>$lang, -path=>'/', -expires=>'+1y'));
} else {

$r->err_header_out('Set-Cookie', $cgi->cookie(-
name=>'language', -value=>’x’, -path=>'/', -expires=>'+1y'));

}
my $uri = $args{'uri'};
$uri||='/';
my $unique = int(rand()*0xffffffff);
if($uri=~/\?/) {

if($uri=~/_unique=/) {
$uri.=~s/_unique=\d+/_unique=$unique/;

} else {
$uri.="&_unique=$unique";

}
} else {

$uri.="?_unique=$unique";
}
$r->status(MOVED);
$r->err_header_out(URI=>$uri);
$r->err_header_out('Location'=>$uri);
$r->send_http_header();

} else {
$r->content_type('text/html');
$r->send_http_header();

print "Languages are ",join(':',@LANG);

%LANG = (
'' => 'Auto',
'en' => 'English',
'es' => 'Español',

);

my $referer=$ENV{HTTP_REFERER};
print $cgi->start_form(-method=>'GET');
print $cgi->popup_menu(-name=>'lang', -values=>['',@LANG], -
labels=>\%LANG, -default=>$ENV{LANGUAGE}, -onChange=>'form.submit()');
print $cgi->hidden(-name=>'uri',-value=>$referer);
print $cgi->end_form();

}

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 16

language.pl
In order to be used, the program must be installed under Apache::Registry.

There’s always room for improvement
This brief article summarizes my experiences on incorporating multilingual support in

a large website. I hope this humble recollection of code, tips and pointers can make
someone else’s job even a bit easier. In case you haven’t noticed this article is far from
being a definitive work on multilingual content serving, so I will appreciate any feedback
on the points raised here and –more importantly- on the following points that are left
completely open:

Multilingual search engines
I do not know what methodology is used by search engines to determine the language

of a document, or if they apply the Varies HTTP header (see below) to index all language
variants of a document. However, I am in favor of using the LANG attribute of the
HTML tag as defined in the W3’s HTML 4 recommendation to make known the language
of all documents.

Varies HTTP header
I am not aware of a browser that uses the content on the HTTP Varies header.

However a system using the recommendations in this document can be improved to be
fully compliant with the HTTP/1.1 spec.

Apache 2.0 support
Even though I have played a little with Apache 2.0 betas, I ignore completely if there

are going to be any changes on the underlying architecture and algorithms that might
affect multilingual content serving and/or render this entire document as irrelevant by the
time of a final release.

Conclusion
Following closely Perl’s mantra “There’s more than one way to do it”, there are

several working approaches to multilingual content serving. When implementing one of
the techniques mentioned in this document, be sure to test it in as many browsers as
possible, as there are plenty implementation bugs in browsers, caches and even in server
software waiting to bite one of your users. Once you’ve finished testing, test again.
If you think you have tested enough, drop me a line and let me know how your project
turns out, and if this document has been useful at all to you.

Javier Arturo Rodríguez
 jrodriguez@latinb2b.com

 Page 17

Bibliography and other resources

Relevant Standards
[1] HTML 4.01 Specification - Language information and text direction
World Wide Web Consortium
http://www.w3.org/TR/REC-html40/struct/dirlang.html

[2] Code for the Representation of the Names of Languages. From ISO 639, revised
1989.
Prepared by Robin Cover
http://www.oasis-open.org/cover/iso639a.html

[3] ISO 639:1988 (E/F). Code for the Representation of Names of Languages. First
edition, 1988-04-01.
International Organization for Standardization (ISO).
Reference number: ISO 639:1988 (E/F).
Geneva: International Organization for Standardization, 1988.
 iii + 17 pages.

Relevant RFCs
[4] RFC1766
Tags for the Identification of Languages
http://www.faqs.org/rfcs/rfc1766.html

[5] RFC 1945
Hypertext Transfer Protocol -- HTTP/1.0
http://www.faqs.org/rfcs/rfc1945.html

[6] RFC2068
Hypertext Transfer Protocol -- HTTP/1.1
http://www.faqs.org/rfcs/rfc2068.html

[7] RFC2070
Internationalization of the Hypertext Markup Language
http://www.faqs.org/rfcs/rfc2070.html

[8] RFC2231
MIME Parameter Value and Encoded Word Extensions: Character Sets, Languages, and
Continuations
http://www.faqs.org/rfcs/rfc2231.html

[9] RFC2277
IETF Policy on Character Sets and Languages
http://www.faqs.org/rfcs/rfc2277.html

[10] RFC2295
Transparent Content Negotiation in HTTP
http://www.faqs.org/rfcs/rfc2295.html

http://www.w3.org/TR/REC-html40/struct/dirlang.html
http://www.oasis-open.org/cover/iso639a.html
http://www.faqs.org/rfcs/rfc1766.html
http://www.faqs.org/rfcs/rfc1945.html
http://www.faqs.org/rfcs/rfc2068.html
http://www.faqs.org/rfcs/rfc2070.html
http://www.faqs.org/rfcs/rfc2231.html
http://www.faqs.org/rfcs/rfc2277.html
http://www.faqs.org/rfcs/rfc2295.html

Building visually consistent, multilingual websites
with Apache and mod_perl

Page 18

Internationalization and Localization
[11] perllocale(1)
http://www.perl.com/CPAN-local/doc/manual/html/pod/perllocale.html

[12] Apache::Language module
http://www.CPAN.org/modules/by-module/Apache/

[13] Locale::gettext module
http://www.perl.com/CPAN-local/authors/id/PVANDRY/

[14] Internationalization Reference List
Compiled by Eugene Dorr
ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/i18n-books.txt

[15] Techniques for multilingual Web sites
Jukka Korpela
http://www.hut.fi/u/jkorpela/multi/

Cookies
[16] Persistent client state – HTTP cookies
Preliminary specification
Netscape Corp.
http://home.netscape.com/newsref/std/cookie_spec.html

[17] RFC 2109
HTTP State Management Mechanism
http://www.faqs.org/rfcs/rfc2109.html

[18] Cookie Central
http://www.cookiecentral.com/

General resources
[19] Information on Pages Available in Multiple Languages
Debian Project
http://www.debian.org/intro/cn

[20] Writing Apache Modules with Perl and C
Lincoln Stein & Dough MacEachern
Home site at http://www.modperl.com/
Available online from O’Reilly and Amazon.com

http://www.perl.com/CPAN-local/doc/manual/html/pod/perllocale.html
http://www.cpan.org/modules/by-module/Apache/
http://www.perl.com/CPAN-local/authors/id/PVANDRY/
ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/i18n-books.txt
http://www.hut.fi/u/jkorpela/multi/
http://home.netscape.com/newsref/std/cookie_spec.html
http://www.faqs.org/rfcs/rfc2109.html
http://www.cookiecentral.com/
http://www.debian.org/intro/cn
http://www.modperl.com/
http://www.ora.com/catalog/wrapmod/
http://www.amazon.com/exec/obidos/ASIN/156592567X/writinapachemodu

	Introduction
	A bit of history
	The challenge
	The solution
	Content negotiation
	MultiViews
	Type maps
	Disadvantages of mod_negotiation

	Using Apache::SelectLanguage
	Filename translation
	Serving actual multilingual content
	Working around buggy caches
	A simple template system

	Putting it all together
	There’s always room for improvement
	Multilingual search engines
	Varies HTTP header
	Apache 2.0 support

	Conclusion
	Bibliography and other resources
	Relevant Standards
	Relevant RFCs
	Internationalization and Localization
	Cookies
	General resources

